
The Development of a Linus-Compatible Slow Control Interface for the MINERvA Data

Acquisition Electronics

Christopher Marshall

Office of Science, Science Undergraduate Laboratory Internship (SULI) Program

Carleton College

Northfield, Minnesota

Fermi National Accelerator Laboratory

Batavia, Illinois

July 28, 2009

Prepared in partial fulfillment of the requirement of the Office of Science, Department of

Energy's Science Undergraduate Laboratory Internship under the direction of David Boehnlein in

the Particle Physics Division at Fermi National Accelerator Laboratory.

Participant: ______________________________________

Signature

Research Advisor: ______________________________________

Signature

ABSTRACT

The Development of a Linus-Compatible Slow Control Interface for the MINERvA Data
Acquisition Electronics
Christopher Marshall (Carleton College, Northfield, MN 55057), David Boehnlein (Fermi
National Accelerator Laboratory, Batavia, IL 60510).

As the MINERvA neutrino-nucleus interaction experiment at Fermilab transitions from its
tracking prototype detector to the full detector, its data acquisition system shifts from Microsoft
Windows to Scientific Linux. This change provides performance benefits for the experiment’s
detector readout and alleviates some cross-platform compatibility issues. However, the change in
operating system brings about a need for a new readout library to access information in the
detector’s electronics, and an accompanying graphical user interface. This interface, the slow
control, allows users to send messages to the MINERvA detector and configure its electronics
for a run. A Linux-compatible slow control interface was developed at Fermilab in June and July
2009. Written in Python, it uses the wxPython library and communicates with the readout
library, enabling users to monitor the data acquisition electronics in an environment free of
programming syntax.

Introduction

The MINERvA experiment at the Fermi National Accelerator Laboratory will employ a fine-

grained, solid scintillation detector to make a variety of precision neutrino-nucleus interaction

measurements. Unlike the MINOS near detector, which sits immediately downstream in the

Neutrinos at Main Injector (NuMI) Hall, MINERvA will feature a fully-active inner detector,

made up of 30,272 triangular plastic scintillator strips [1]. Each of these strips reads out on one

side to a multi-anode photomultiplier tube (PMT). Neutrino events in the detector create particles

which scintillate in the plastic, and the signal propagates down a wavelength-shifting fiber-optic

cable until it reaches the electronics. The 473 PMTs amplify the signal and digitize the optical

light inside a light-tight box, outside of which sits the controlling front-end board (FEB) [1].

Each board contains a central field-programmable

gate array (FPGA), which manages six trigger

pipeline (TriP) chips, three on each side of the board.

The TriPs, originally designed for the fiber tracker of

the DØ experiment at Fermilab, control the gain and

threshold voltages of the PMT’s 64 channels [2]. In

addition to controlling the TriPs, the FPGA also

directs the high-voltage settings. Up to ten FEBs can

be daisy-chained together to form a chain readout

controller (CROC) module. The CROCs and their parent CROC Interface Modules (CRIMs) sit

inside one of MINERvA’s two VME crates and are operated by a commercial CAEN card.

Figure 1: The rear view of the MINERvA
front-end board shows the six TriP chips. The
FPGA sits on the reverse side in the center.

The VME crates connect to the two-CPU data acquisition (DAQ) computer, located underground

near the detector. While the current DAQ uses some custom software developed specifically for

MINERvA, it also takes advantage of CAEN commercial programs and software developed for

the Large Hadron Collider beauty (LHCb) experiment [3]. One CPU of the DAQ underground

computer receives real-time data from the detector; the other communicates with the MINERvA

slow control system by receiving “frames.” Essentially messages to the detector, these frames

allow users in the control room at Fermilab’s Wilson Hall to configure the electronics for a run.

The slow control manages all components of the electronics system; some settings pertain to

entire CROCs while others affect only specific FPGA or TriP chips. A readout library provides

access to the slow control settings, allowing users to read information from the system, alter the

settings if desired, and write the new settings to memory in the electronics. The process of

reading and writing configuration settings occurs through a graphical user interface (GUI) in the

control room computers.

The tracking prototype (TP) consisted of about one-fourth of the full MINERvA detector. After

construction and testing on the surface, the prototype’s first modules moved into the NuMi hall

in March 2009, and the TP phase of the experiment ran until the Fermilab beam shutdown in

June 2009. Beyond testing and debugging the detector itself, the TP run served as a test for the

DAQ, which read out data from the TP just as it will the full detector [4]. During this phase, the

DAQ ran on Microsoft Windows. For the full detector, MINERvA will use a new Linux DAQ

for three reasons. First, nearly all MINERvA computing takes place on a Scientific Linux

platform. Second, LHCb may discontinue support for Windows, which would leave MINERvA

using old, unsupported software. Third, tests indicate that a Linux DAQ could run an order of

magnitude faster than its Windows counterpart [5].

In addition to writing a new DAQ for Linux, the platform shift brings about a need for a new

slow control readout library and GUI. For the Windows DAQ, both the readout library and the

GUI were written in C# [6]. These programs run on Windows only and have no cross-platform

portability. The core of a C++ readout library was developed in anticipation of a shift to Linux-

based DAQ computing, written primarily by Elaine Schulte of Rutgers University. The C# slow

control GUI used during the TP run could work with the C++ library, but will not run on Linux

computers.

METHODS

Python was chosen as the programming language for the Linux DAQ slow control GUI for

several reasons. Most importantly, the availability of well-documented GUI graphics libraries for

Linux made design simple. The simplicity of Python code makes the source both easy to read

and easy to modify in the event of a future desire for enhanced functionality. Python ports easily

across platforms and has multiple open-source packages that generate wrapper code for C++

functions. Performance, while a concern for the slow control, was not an issue for the GUI,

which performs no real-time data acquisition. Also, the demands on the GUI itself are relatively

small; the largest task involves saving or loading all of the settings, which in practice will not

exceed a few thousand fields.

Figure 2: The CROC settings of the MINERvA DAQ slow control GUI. The tree control at left accesses the
GUI page at right.

Python’s default GUI library, Tk, lacks several features necessary for the slow control GUI. The

C# Slow Control GUI, developed by Fermilab’s Cristian Gingu, organized the electronics into a

tree structure. The logic of this interface mimics the hierarchy of the actual electronics; the

parent-child relationship in the tree mirrors the flow of information in the detector. The tree

control does not exist in Tk. Also, the slow control GUI manages too much information to fit on

a single page, and Tk does not have a built-in tab method. Both of these methods exist in another

GUI library, wx [7]. Though not as well documented or as widely used as Tk, the wx library was

chosen for its functionality.

RESULTS

The wx library has many dependencies, mostly graphics libraries. MINERvA’s computers lacked

ten packages, which were built from source code for Scientific Linux in June 2009. With the wx

library in place, the development of the slow control GUI began in June and the shell was

completed on July 21, 2009. The code (before plugging in functions from the readout library)

consists of 1 842 lines, divided into 19 Python classes. Each tab in the GUI notebook manages

one component of the slow control. A user navigates the interface by selecting pages from the

tree. Clicks to the tree instruct the GUI to display information for the desired electronic

component. The tree control allows the user to access all hardware (CRIMs, CROCs, FPGAs and

TriPs) and save settings for every element separately, all in a compact format.

Figure 3: The default GUI for the FPGA Register (left) hides many of the options.

For the FPGA and TriP settings, the user can toggle back and forth between a default and an

advanced mode; in default mode the GUI hides the fields that will see less use while storing the

data they contain. The GUI can also be used to read and monitor high-voltage settings and to

control MINERvA’s light injection (LI) system. The LI box contains 20 light-emitting diodes

(LEDs), which inject light into individual PMTs for testing and calibration. Users can initialize

and configure LI box runs with the slow control GUI. Because of the amount of data the slow

control GUI contains, users may want to save all settings for later use. The interface can save and

load all of its fields to human-readable and human-editable text files through an option in the File

menu. This output format also enables search-and-replace editing, which is impossible in the

framework of the GUI.

FUTURE WORK

In order to successfully implement the slow control into MINERvA’s electronics and DAQ

system, the readout library must be completed. Then, the readout functions can be hooked into

the GUI. The first step involves continued expansion and debugging of the existing C++ readout

library. The second step requires wrapper functions to convert the output from the C++

functions into Python objects. Then, the C++ classes can be imported into the Python GUI code

directly, granting the interface access to variables extracted from the detector by the readout

functions. Manually generating this code would entail writing a wrapper function for each C++

class. Instead, SWIG, an open-source C/C++ wrapper code generator, can produce the necessary

functions with minimal work by hand.

Figure 4: The advanced mode of the LI box tab. MINERvA’s light injection system can be run from
the slow control.

ACKNOWLEDGEMENTS

This work would not have been possible without the help of Gabe Perdue. The C# GUI written

by Cristian Gingu provided plenty of inspiration. Also, thanks to Dave Boehnlein for his support,

and to the MINERvA Collaboration. Funding for this work was provided by the United States

Department of Energy, through the Science Undergraduate Laboratory Internship (SULI)

program.

REFERENCES

[1] MINERvA Collaboration, “The MINERvA Technical Design Report,” December 2006.

[2] MINERvA Collaboration, “Impact of MINERvA Design, Assembly and Installation on

Femilab,” March 2004.

[3] G. N. Perdue, “DAQ Status,” MINERvA-doc-3749, June 2009.

[4] J. Castorena, “Commissioning of the MINERvA Tracking Prototype,” MINERvA-doc-3653,

May 2009.

[5] G. N. Perdue, “Plans for the Once and Future MINERvA DAQ,” MINERvA-doc-3537, April

2001.

[6] C. Gingu and G. N. Perdue, “Slow Control Manual,” MINERvA-doc-3238, January 2009.

[7] R. Dunn, “What is wxPython?” July 2009, http://www.wxpython.org/what.php.

